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Abstract  Speaker verification is a challenging problem in speaker recognition where the
objective is to determine whether a segment of speech in fact comes from a specific indivi-
dual. In supervised machine learning terms this is a challenging problem as, while examples
belonging to the target class are easy to gather, the set of counter-examples is completely
open. This makes it difficult to cast this as a supervised classification problem as it is difficult
to construct a representative set of counter examples. So we cast this as a one-class classifi-
cation problem and evaluate a variety of state-of-the-art one-class classification techniques
on a benchmark speech recognition dataset. We construct this as a two-level classification
process whereby, at the lower level, speech segments of 20ms in length are classified and
then a decision on an complete speech sample is made by aggregating these component clas-
sifications. We show that of the one-class classification techniques we evaluate, Gaussian
Mixture Models shows the best performance on this task.

Keywords One-class classifiers - Speaker verification - Gaussian mixture models

1 Introduction

In speaker recognition research two separate problem categories are identified; speaker identi-
fication and speaker verification (Reynolds 1995). In machine learning, speaker identification
is an n-class supervised learning problem where the query sample is matched to one of n
classes in the training data. Speaker verification might be considered a binary classification
problem in that the objective is to determine whether or not the query is from the individual
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whose identity is claimed for the query. Given that binary classification is normally easier
than multi-class classification, speaker verification would appear to be an easier problem to
solve than speaker identification. However, real-world examples of the speaker verification
problem, as arising for instance in security applications, are very challenging because of their
open nature. If the utterances of an individual are the examples of the class to be recognised
then the non-class examples cover everything else. For this reason it is worth analysing the
merit of casting this as a one-class classification problem rather than a binary classification
problem.

One-class classifiers (OCCs) have emerged as a set of techniques for situations where
labelled data exists for only one of the classes in a two-class problem. For instance, in
industrial inspection tasks, abundant data may only exist describing the process operating
correctly. Training data describing the myriad of ways the system might operate incorrectly
are difficult or impossible to gather. The philosophy behind the OCC approach is to develop
a classifier that characterises the target class, and thus can distinguish it from all counter-
examples.

A related problem arises where negative examples exist, but their distribution cannot
be characterised. For example, it is easy to provide characteristic examples of the writings
of Shakespeare but impossible to provide examples of the counter-class (material not by
Shakespeare). While such problems are also appropriate for the OCC approach, the motivation
is slightly different—counter examples are in fact available but it is difficult to construct a
set of counter examples with good coverage of the universe of possible counter examples.

In speaker verification the problem is generally cast as a binary problem, unfortunately
the impostor class is impossible to accurately model. Nevertheless non-class examples can
have a role in OCCs whereby they are used for threshold setting. While we recognise that
such a use of non-class data may dramatically improve performance in this paper we are
concerned with preparing a base-line analysis where OCCs are trained solely on target data.
The evaluation presented here is carried out on the CHAINS corpus introduced by Cummins
et al (2006).

The paper proceeds with an overview of the speaker recognition research area in Sect. 2
and a brief review of the relevant OCC techniques in Sect. 3. The main results of the evaluation
are presented in Sect. 4 and the paper concludes with a summary and some suggestions for
future work in Sect. 5.

2 Speaker verification

Speaker recognition systems aim to extract, characterise and recognise the information
enclosed in the speech signal conveying the identity of a speaker. The general area of speaker
recognition includes two fundamental tasks: speaker identification and speaker verification
(Bimbot et al. 2004; Reynolds 2002). Speaker identification is the task of assigning an unk-
nown voice to one of the speakers known by the system: itis assumed that the voice must come
from a fixed set of speakers. Thus, the system must solve a n-class classification problem
and the task is often referred to as closed-set identification.

On the other hand, speaker verification refers to the case of open-set identification: it is
generally assumed that the unknown voice may come from an impostor, not all the speakers
accessing the system are known. In this case, the standard approach is based on a likelihood
ratio test to distinguish between the two hypotheses: the test speech comes from the claimed
speaker or from an impostor. Furthermore, depending on the specific application, speaker
verification systems can work in a text-dependent or text-independent setup. In text-dependent
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Fig. 1 The components of a speaker verification system

applications the verification system has prior knowledge of the text to be spoken (e.g. a
pass-phrase). In a text-independent application, no prior knowledge of the text to be spoken
is provided to the system.

Generally, speaker verification systems are composed of three main components as shown
in Fig. 1: a front-end responsible for signal processing and feature extraction, a model for
each speaker allowed to access the system and a model for impostor detection. In the next
two sections we introduce each individual component of the verification system.

2.1 Front-end processing and feature extraction

As a first step, the front-end module of the verification system generally performs speech
activity detection to remove the non-speech portion of the signal. Next, features embodying
information on the speaker identity are extracted from the speech signal. Finally, the front-end
implements some form of channel compensation in order to remove those spectral characte-
ristics that are dependent on the acquisition channel (e.g. microphone) and do not reflect the
speaker identity.

In most speaker verification and identification systems, some form of spectral-based
parametrisation is used to encode the speech in machine readable form. Typically short-term
analysis (about 20 ms) is used to compute a sequence of magnitude spectra. Most commonly,
the spectra obtained are then converted into cepstral coefficients and the frequency scale
warped into the Mel scale (Bimbot et al. 2004).

In this work, conventional Mel Frequency Cepstral Coefficients (MFCCs) feature vectors
are employed for speech parametrisation. Twenty-five MFCCs are used for speech parame-
trisation, extracted using a Hamming window of about 20 ms. The zeroth cepstral coefficients
(the DC level of the log-spectral energies) are not used in the feature vector.

2.2 Speaker modelling

The feature vectors extracted from the training speech material are used to create a set of
speaker models, to verify if the test speech sample belongs to one of the speakers in the pool.
The modelling of a speaker may be implemented according to various approaches, i.e. nearest
neighbour, neural networks, Hidden Markov Models (HMMs) and Support Vector Machines
(SVMs). Generally, the selection of the model adopted is largely dependent on the type of
speech used, the expected performance and the computational and storage cost (Reynolds
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2002). From published results (e.g. Reynolds 1995), HMMs based systems generally produce
the best performance and in the case of text-independent applications single state HMMs—
also known as Gaussian Mixture Models (GMMs)—are the most commonly used. Neural
networks have been largely tested in this context also, however some of their shortcomings
(such as the fact that the optimal structure has to be selected by trial-and-error procedures)
have been judged crucial in the area of speaker verification (Bimbot et al. 2004; Reynolds
2002). SVMs, on the other hand, have been the subject of recent studies (Bimbot et al. 2004)
aimed at adapting this extremely powerful technique to the problem of speaker verification.

2.3 Impostor modelling

Two main approaches are used to obtain the impostor model used in the likelihood ratio
test implemented in speaker verification systems. The first approach—known as likelihood
sets, cohort or background speakers (Bimbot et al. 2004; Reynolds 2002)—uses a set of other
speakers to cover the space of alternative hypotheses. The impostor score is usually computed
as a function (e.g. max, average) of the match scores obtained from the alternative models.
It is generally recognised that this approach requires a speaker-specific background speaker
set to obtain the best performance (Bimbot et al. 2004). The second approach to impostor
modelling uses a single speaker-independent model trained on speech from a large number
of speakers. This approach is usually referred to as general model, world model or universal
background model (UBM) (Bimbot et al. 2004). The main advantage of the UBM approach
is that a single speaker-independent model is trained and then used for all the speakers in
the pool. This approach has become the predominant approach used in speaker verification
systems. Generally, these two approaches can be applied to any speaker modelling technique
(Reynolds 2002).

3 One-class classification

When employing binary classification we attempt to train a known speaker against anything
that is ‘not’ from the speaker. This is an unfortunate scenario, as to sample everything that
is ‘not’ is an impossible task. We are training with a class that is statistically well-sampled
versus a class that is not. This statistical imbalance in the training set may lead to the creation
of a system that does not generalise well when run against non-training data.

The area of OCC is well adapted to such problems; one builds a model that creates a
boundary around the well-sampled target distribution that rejects all but a small percentage
f of target examples and hence hopes to be able to identify (100 — f)% of the target while
rejecting as many of the outlier class as possible. Most OCCs will produce a score for a
given example and if it lies above a given threshold it is classified as a member of the target
class.

The data we have is a sequence of windows of Mel cepstral coefficients where each
example represents 20ms of speech and there is an overlap between examples of 10ms.
Each individual example (time slice) is not particularly informative to predict the class of
the data. It is assumed that groups of slices are taken from the same single source speaker.
An approach that is used in the n-class problem is to take many slices accounting for a given
period of speech and aggregate the scores to strengthen the evidence that this set of time
windows comes from a given source (Reynolds 1995). Here we propose a similar strategy,
which is explained in Sect. 3.2.

@ Springer



An evaluation of one-class classification techniques 299

07 —————— ——r 008
Summed Distribution
i (a) 1 oo (b) Gomponent Distribution
05 1\ e
f 1
{1\ 005
04 [ ]
i || oo
03 / \ ]
| \ 003 -
\
82 ! \'. 002 -
o1 [ 001
0 . J , L g v : -
5 4 3 2 4 1] 1 2 3 4 5 -15 -10 5 o 5 10 15 20 %

Fig. 2 In (a) a single Gaussian is used to model the underlying target data, the value of the gaussian function
is thresholded so that when a value of less than the threshold is found the item will be rejected. Whereas (b)
(a GMM) shows by using many individual Gaussian models and weighting them, more complex distribution
shapes can be formed

3.1 Selection of classifiers used

In this work we chose four OCCs to compare: a single Gaussian, a GMM (Fig. 2), a Nearest
Neighbour based approach and an approach inspired by Support Vector Machines (SVM)
the Support Vector Domain Description (SVDD) (Tax and Duin 1999).

3.1.1 Single Gaussian

A simple model for any problem is to assume the data is drawn from the Gaussian distribution
(Tax 2001). This model assumes that the data fits a unimodal convex data description. The
function that determines the score, where n is the mean of all the ‘target’ points, ¥ it the
covariance matrix of the target points and d is the dimensionality of the problem given by
the classifier is:

pX, u, ¥) =

1 1 Tv—1
WCXI’(g(X—M) % (Z—M))

3.1.2 Gaussian mixture models

GMMs can model more complex underlying distributions. As the name suggests GMMs are
the combination of several Gaussian Models (a weighted sum). The underlying Gaussians
of the GMM have been shown to represent the characteristic spectral shapes of the phonetic
sounds that make up a person’s voice (Reynolds 1995). In these experiments we use only
diagonal covariance matrices for each Gaussian. Itis argued in Reynolds (1995) that this limits
the computational complexity of the problem and that by adding more underlying mixtures
of diagonal covariance, is equivalent to modelling with fewer full covariance matrices. The
function that determines the score, where p is the Gaussian of an individual model, the «;’s
are mixture weights which sum to one, and k is the number of individual Gaussian models
used is given by:

k
pomm(x) = D aip(x, i, Ti) M
i=1
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3.1.3 Support vector domain description

The SVDD finds a sphere of minimum radius that encloses all of the target data. This is cast
as a minimisation problem where one finds a radius R and centre ¢ such that the following
minimisation problem is solved. Data that lies further than a given distance from the centre
of the sphere is labelled as an outlier.

min RZs.7.
x; —¢,x; —¢) < R? Vx; € target

By replacing the inner product in the above problem with a ‘kernel’ function more flexible
decision boundaries may be found. Once the optimisation problem is solved, new points
that are further than a given distance from the centre are labelled as outliers. Details of the
mathematical derivation and details of the method can be found in Tax and Duin (1999). The
kernel function that is used in this work is the Gaussian kernel:

2 2
K (x, X/) — e—llx—x I“/20

The o parameter is selected for the kernel depending on the classification task at hand. It is
often known as the width parameter and controls the flexibility of the decision boundary. If o
is set too high the model will tend to under-fit the data and if it is set too small it will over-fit
the data.

A variation of the algorithm finds a minimum hyper-sphere that rejects all but some given
fraction of the data. Upon the completion of the aforementioned optimisation problem a
corresponding set of weights «; that correspond to the weight of each training example in the
solution settles to a global minimum. What is interesting is that for most of the items x; in
the training set their weight «; will be zero, and so they are not used in the classification. The
elements x; in the training set that do not have zero weights are known as support vectors
and new incoming data can be classified using kernel operations on these support vectors
only (Tax and Duin 1999).

Through these support vectors and their corresponding weights it is possible to calculate
the radius of the sphere in the space that the kernel function defines.

3.1.4 Nearest neighbour

We carried out a comparison of several nearest neighbour techniques to identify the variation
producing the best results on an individual time window, as determined by the highest area
under the ROC curve (AUC) (Bradley 1997). This nearest neighbour method we chose takes
the magnitude of the average directional vector to the k nearest neighbours as the measure
to threshold against.

3.2 Aggregation of scores

Each of the above classifiers creates a score that is thresholded and if it is above a given
threshold it is considered to be from the ‘target’ class and otherwise it is considered to be
an ‘outlier’. Since each individual score is a high-variance prediction of the class, it makes
sense to aggregate a sequence of scores when making a prediction.

The component scores from classifiers do not directly represent the probability of the item
belonging to a class so in order to combine scores it is better to convert the raw scores to
probabilities. To achieve this, the score for the item belonging to the target and the score for
it belonging to the outliers was normalised to sum to one.
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To combine the probabilities for an individual classification we used a simple summation,
a strategy that has been shown to give good results (Taniguchi and Tresp 1997). Although
the alternative product rule follows directly from a Baysian viewpoint, under the assumption
of independence, it can dramatically amplify errors as more slices are added (Kittler et al.
1998). The sum rule is much less sensitive to estimation error at the single slice level (Kittler
et al. 1998) and hence was used for the evaluation presented here.

4 Evaluation

As explained in Sect. 2.3 there are two ways to model the impostor. When using likelihood
sets, an individual background model per speaker needs to be trained, in order to achieve op-
timal performance. This is a poor solution as each speaker requires their own background set
to achieve optimal performance (Bimbot et al. 2004). The preferred alternative is a Universal
Base Model (UBM), which is global background model trained on a large volume of speech
(1+h of speech). The UBM should be reflective of the expected alternative speech to be en-
countered during recognition as an impostor model (Reynolds et al. 2000). The assumption
that this speech will be of the ‘expected alternative’ would appear to be counter to the goal
we wish to attain, namely ‘to be able to verify a speaker without full knowledge of the impos-
tor’. While we recognise that outlier examples will considerably help in the verification task
(by tightening the decision boundary around the target speaker), We believe a comparative
analysis of OCCs trained only on ‘target’ data is the most fair comparison to benchmark
classifiers against each other. We expect that GMM’s will outperform other classifiers at a
cepstral level as it has been shown that the underlying Gaussian components of the model
inherently model the underlying distributions of the phonetic sound production (Reynolds
and Rose 1995).

4.1 Experimental setup

The CHAINS corpus (Cummins et al 20006) is the result of an effort to provide a speech
database expressly designed to characterise speakers as individuals.! The corpus contains
the recordings of 36 speakers obtained in two different sessions with a time separation of
about two months taken in two different recording environments. Across the two sessions,
each speaker provides recordings in six different speaking styles.

In the experiments conducted here we used one speaking style SOLO from the CHAINS
corpus, where 16 speakers read a prepared text alone. We only used speech from one recor-
ding session so that we would not have to manage problems created by different channel
effects between different microphones. The training set was made up of speakers reading
ten sentences making up on average 24 s of speech per speaker. The test set was made up
of speakers reading nine sentences later in the same session making up on average 16s of
speech per speaker. We used the preprocessed Mel Cepstral coefficients from train and test
files in the CHAINS corpus. Each Mel Feature vector represents a 20 ms slice of time. As noted
above, we train using only data on the target speaker to provide a fair comparison between
classifiers.

In order to select the parameters of the base classifiers for each speaker we built them on
the individual slice level first. The parameters for each classifier (number of mixture models
for GMM, o for the SVDD, etc.) were selected by using a consistency criterion based on the

! The corpus is freely available for research purposes from http://chains.ucd.ie.
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method is described in detail in Tax and Muller (2004). This criterion seeks to reject f % (in
our case 10%) of individual target slices and evaluates more and more complex parameters
for the classifier until the model becomes statistically unstable. This process defines the most
complex classifier, which can still reliably be trained on the data (Tax and Muller 2004).
For k-NN the simplest model was already unstable, so for selection of k£ here we ran cross
validation and found k = 40 to be the best parameter value. It should be noted that for the
models other than k-NN the parameter selection was done for each individual speaker rather
than on a global basis.

On the training set the summed scores of the individual slices from the target class were
thresholded to reject 10% of the target class in order to provide a tight decision boundary
around the target class.

4.2 Discussion of results

When an evaluation on a single 20ms time window was done on the data we found a high
variability of scores between speakers (Fig. 3). With more slices all classification strategies
increased performance and this trend continuing at after 1s of speech (Fig. 4). A very wide
range of performances was found across all speakers (Fig. 5.).
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Fig. 3 Looking at each speaker in turn using only a single time slice to classify whether the speaker was an
‘outlier’ or a ‘target’ we found their associated AUC rates, False Positive Rates and False Negative Rates.
The above diagram shows the box and whisker diagrams of the scores obtained from the 16 speakers on each
classifier. It is clear that at a single time slice level classifiers have difficultly deciding whether the object
comes from the ‘target’ or ‘outlier’ class. The best false positive rate over the 16 speakers was 0.56 where
worst false positive error rate as high as 0.86 which can be observed for the SVDD
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Fig. 4 The average performance increases as the number of slices is increased, this is seen to be continuing
to rise even when 100 slices (~1s) of speech is used in the classification

By looking at the false negative scores it can be seen that on average none of the classifiers
hit their trained target of 10% rejection during test and rejected more than this base amount
on average. The GMM and single Gaussian model best fitted their target distribution bet-
ween training and test sets. As mentioned in Reynolds and Rose (1995) the average speech
spectrum contains speaker specific information and for this reason was not removed in these
experiments. The average speech spectrum can vary considerably over even short periods of
time (Reynolds and Rose 1995) and so this shift may account for the drift between the trained
false negative rate differing from the values attained on the training set.

4.3 Error analysis

It is clear from Fig. 5 that the OCC approach to speaker verification is effective for some
speakers but performs badly for other subjects. It is notable where errors are high that it is
the false positive component of the error that is the problem. Perhaps the most remarkable
aspect of the false positive rates is the variability: for some speakers a respectable figure of
10% of false positives is achieved but for other speakers the false positive figures are above
80%.

In order to explore this issue we performed some analysis on the data and the models
in order to understand what caused the high FP error rates. Since high FP rates entail the
acceptance of impostors as belonging to the positive class, our intuition would suggest that
models with high FP rates are flabby models that cover large areas of the problem space.
This hypothesis can most easily be explored in the context of the GMMs. In Eq. (1) we can
see that the spread of the model is defined by the variance matrices X; of each component
model and also by the dispersion of model means ;. We have found that the variance in
the component Gaussians rather than the dispersion of the Gaussian means correlates with
the FP error rate. This can be seen in the graph on the top left of Fig. 6 which shows the
correlation of the logarithm of the following score with the FP error:
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Fig. 5 It can be seen that for some individuals OCC techniques yielded good results when compared against
other speakers. It is also noted that certain classification strategies preformed better for some speakers than
for others indicating that model selection may also need to be considered when building an OCC for a given
speaker

k
Model variance score = Z o; det(X;) 2)

i=1

The variance matrices ¥; are diagonal matrices with each term representing the variance in a
single dimension so the determinant is calculated by simply taking the product of the entries
on the main diagonal. This simple measure effectively predicts the FP error, the dominant
component of the overall error. This is particularly useful in OCC as it is not practical to do
cross validation as an aid to model selection. In Fig. 6 we show some other measures that
correlate (and thus predict) the FP error for the other classifiers. These other measures are
summarised as follows:

— For the SVDD the radius of hypersphere as defined in Sect. 3 is the obvious measure of
the model spread. However, it is not appropriate to compare the hypersphere radii for
different speakers directly as they are based on different kernel widths—the kernel width
is specialised for each speaker as part of the training process as outlined in Sect. 4.1. This
parameter setting is disabled for the purpose of the analysis presented here: instead the
kernel width is set to the average value for all speakers. So the results presented in Fig. 6
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Fig. 6 The graphs in this figure illustrate how the spread in the models used by the different classifiers
correlates with the FP error. The appropriate parameter for the different models are as follows; for the SVDD
it is the radius of the hypersphere that captured all of the data for some fixed kernel width, in the case of

the

k-NN it is the average distance to the k nearest neighbours (k = 40), for the single Gaussian model it

is the determinant of the covariance matrix, and for the Mixture of Gaussian’s it is the weighted sum of the
covariance matrices for each Gaussian in the model

are based on the same kernel width for all speakers. It can be seen that this hypersphere
radius measure correlates well with the FP error.

It would be expected that some measure of density would correlate with the FP error rate
for the k-NN classifiers. Given that all the classifiers use the same size of training set, an
appropriate measure of density would be the average distance to the k (40 in this case)
nearest neighbours. Again, it can be seen in Fig. 6 that this measure correlates well with
the FP error.

The appropriate measure for the single Gaussian model is a simplification of the measure
shown in Eq. (2). For a single Gaussian there is one covariance matrix X and we find that
the determinant of this matrix correlates well with the FP error (see the graph on the top
right in Fig. 6).

In this analysis the error figure used was the error found when 50 slices of speech were

used. This analysis shows that, for some speakers, the models have a considerable spread in
the input space and thus are prone to FPs. But if we consider the particular case of the singe
Gaussian models it is clear that the problem is due to an inherent spread in the data rather
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than a problem in the process of building the models. If, for a single Gaussian model, det (X)
is large then that reflects a spread in the underlying data that cannot readily be fixed by the
modelling process. This illustrates shortcomings in the feature extraction process whereby
the extracted features do adequately separate the speakers. For this reason we are currently
working on identifying an improved set of features to use for classification.

5 Conclusions and future work

The objective with this work was to assess whether state-of-the-art OCC techniques are
effective for speaker verification. The evaluation presented here shows that GMM affords
the best improvements on average of the four classification techniques examined. However
to make an accurate prediction based on the techniques used thus far only using one class to
train on the current feature set appears to be unrealistic due to the variability in performance
between speakers.

It has been seen that different classification models perform better for different speakers
and it would be interesting to try to tease out the reasons for these differences. Some speakers
failed to perform well across all classification strategies (e.g. ‘irf07’ Fig. 5). These poor
performing speakers may merely sit very close to one another in a region of feature space
and so the spread of their underlying cepstral distributions overlaps more prominently than
with other speakers. This could be investigated by looking at cross correlation matrices to see
which speaker the false positives for a given individual comes from and in what percentage.

It has been suggested that an important future direction for speaker verification will be in
the development of higher level speech features (Reynolds 2003) that capture not only the
individual time slices but also the temporal information. While the GMM-UBM model is
the best approach on a slice by slice level, the use of SVMs employing sequence kernels for
speech recognition is an active research area. The combination of these classifiers with the
GMM-UBM has shown considerable promise (Wan and Renals 2005). An investigation into
an extended feature space would seem appropriate.

The next step in this evaluation is to compare this against a binary classification approach
where a broad set of speakers is sampled to produce representative training examples of the
non-class.
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